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we may take {7+ I{) >> I, for from (5.2.5) and (5.3.3),

I+ I go(vo) | = 80o) | = /2800

Isat - 8t N \/ go(Vo)S/Zl a

In this case the laser transition is strongly saturated, that is, Ny =N, ~ %NT, and
therefore
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Finally, we assume P > I'5; in order to have a large small-signal gain [Eq. (4.12.4)].
Thus
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(5.3.14)

This is the theoretical upper limit to the power conversion efficiency. It is just the ratio of
the quantum of energy hv, associated with the laser transition to the quantum of energy
hvs; associated with the pump transition of the three-level laser (Fig. 4.6). This ratio is
called the quantum efficiency of the three-level laser. It is a property only of the energy-
level structure of the active atoms. Similarly vo/vs is the quantum efficiency of the ideal
four-level laser. In ruby and Nd: YAG lasers the pump level 3 is not a single, sharply
defined level. Viewing them as approximately three- and four-level lasers, and using
the numbers given in Section 4.10, we calculate that ruby and Nd : YAG lasers have
quantum efficiencies <80% and <50%, respectively (Problem 5.4).

Needless to say, the quantum efficiency is seldom approached in real lasers. First of
all, the input-to-output power conversion efficiency, of which the quantum efficiency is
the theoretical upper limit, does not give the actual overall efficiency of operation of the
laser. It only gives the fraction of the power actually delivered to the active medium that
is converted to laser output power. There is no account of the efficiency with which the
pump power is generated and delivered.

In a carefully designed cw ruby laser, for example, about 25% of the electric power
used by the lamp is actually converted to radiation with frequencies lying within the
pump bands of the chromium ion, and, of course, not all of this radiation is actually inci-
dent on the ruby rod. The fraction of the incident radiation actually absorbed by the ruby
is about 4%, and of this only the fraction equal to the quantum efficiency may be used for
lasing. All things considered, the actual operating efficiency of a cw ruby laser system is
on the order of a tenth of a percent. Although much higher efficiencies are available with
modern lasers, the point is that the quantum efficiency defined by (5.3.14) usually has
little bearing on the actual operating efficiency of the complete laser system consisting
of the pump, the gain cell, and the laser resonator.

5.4 EFFECT OF SPATIAL HOLE BURNING

The effect of spatial hole burning is to reduce the output intensity. This can be under-
stood as follows.

5.4 EFFECT OF SPATIAL HOLE BURNING 181

The gain saturates according to the formula (4.13.9), that is,

8o(v)
gw) = 3 4.
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where we have used Eq. (5.2.8) to write
L =1 +10 =219, (5.4.2)

Qur rest;lt (5.2.11) for the laser output intensity is based on the approximation of repla-
cing sin” kz by its average value, that is, by ignoring the spatial dependence of the gain
arising from the interference of the two traveling waves. We will now consider the effect
of retaining the spatial variation (5.4.1) of the gain coefficient. In other words, we will
now improve upon the uniform-field approximation by including the effect of spatial
hole burning.

Equgtion (5.3.7) was written in the uniform-field approximation. Without this
approximation we arrive at the expression

dNZ) 2g0()1, sin® kz
o (h-_ =2g(W)I, sin® kz = _&JV; a3
dt stimulated emission v 1+ 2([\}/[5:11) sin? kz (5.4.3)

This is the power (at frequency v) per unit volume, at the point z, extracted from the gain
medium by stimulated emission. Equation (5.3.7) follows when sin® kz is replaced by 1,
its average value over distances large compared with a wavelength. )

The gain “clamping” condition (5.2.3) does not apply in the “exact” theory in which
the gain and intensity vary with z. In other words, if g is a function of z we can no longer
say that the gain and loss coefficients at every point in the gain medium are equal in
steady-state oscillation. It must still be true, however, that the rate at which the field
gains energy equals the rate at which it loses energy. The former follows from the gen-
eralization (5.4.3) of (5.3.7):
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where we have dropped subscript v’s to simplify the notation.
The rate of field intensity loss from the cavity is just

(t+ I =Lt + ) = g,lI. (5.4.5)

Note that the one-way intensity /") = 7/2 in the direction of the output mirror is inde-
pender.n of z. The right-hand sides of (5.4.4) and (5.4.5) must be equal in cw oscillation,
and this equality determines /. From a table of integrals we find that, for kI > I,
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and, therefore, from the equality of (5.4.4) and (5.4.5),
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This expression can be written more simply:

Sri= 28, (5.4.8)
8
where
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Squaring both sides of (5.4.8), we obtain a quadratic equation for x, with the two

solutions
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Since x should be equal to 1 (I = 0) when go/g, = 1, the desired solution is the one
with the minus sign in the last term on the right:
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or

g 4 28 16

The output intensity is I°Ut = t/®) = (t/2)I, exactly as in the uniform-field approxi-
mation in which spatial hole burning is not included. This is because /°* is determined
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Figure 5.2 Effect of spatial hole burning on output intensity, assuming go/ = 0.10 and s = 0.034.
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directly by the one-way intensity /") (Fig. 5.1), and there are no interference terms to

worry about. Thus
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which is different from the result (5.2.9) obtained when spatial hole burning is
neglected.

Figure 5.2 shows the curve of output intensity vs. output coupling predicted by
(5.2.11) for the example go/ = 0.10 and s = 0.034. Also shown is the curve predicted
by the formula (5.4.13). The two predictions are seen to differ significantly, typically
by about 30%. Thus, the effect of spatial hole burning is to reduce the output intensity,
as already mentioned.

2.5 LAR(}E OUTPUT COUPLING

Our analysis of output power thus far has assumed that the output coupling is small and
that the two traveling waves have equal intensities, /™ = /™). We have also assumed
that the time-averaged intensities /" and /™ are independent of the axial coordinate
z. We will now allow arbitrary output coupling and, therefore, allow the possibility
that 7" and I~ may vary with z. We assume, however, that the variation of interest
is much more gradual than the sin® kz variation due to spatial hole burning, and replace
sin® kz by its average value 1.

Thus, we work with the gain—saturation formula (5.2.4), which we now write in
the form
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For notational simplicity we have again suppressed the v dependence of the various
terms in this equation, but we indicate explicitly the z dependence. In principle, go
could also depend on z, for example, if the pumping rate P depends on z, but here we
assume that it does not. In steady-state oscillation the intensities /™ and /™ satisfy
Eqgs. (4.3.4):
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We will assume that all cavity loss processes (output coupling, scattering, absorption)
occur at the mirrors. Thus, we will not include terms accounting for “distributed” loss
within the cavity.




